Vorkurs Theoretische Informatik

Einführung in reguläre Sprachen

Arbeitskreis Theo-Vorkurs

Freitag, 10. Oktober 2024

Fachgruppe Informatik Universität Stuttgart

Übersicht

1. Automaten: Weitere Beispiele

2. Grammatik und Automaten

3. Reguläre Ausdrücke

4. Wiederholung

Automaten: Weitere Beispiele

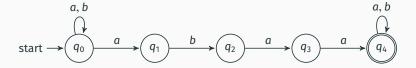
Beispiel NEA vs DEA

$$L = \{uabaav \mid u, v \in \{a, b\}^*\}$$

Beispiel NEA vs DEA

$$L = \{uabaav \mid u, v \in \{a, b\}^*\}$$

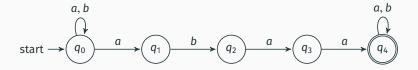
NEA:



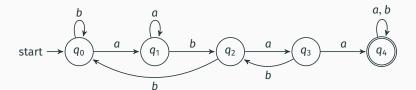
Beispiel NEA vs DEA

$$L = \{uabaav \mid u, v \in \{a, b\}^*\}$$

NEA:



DEA:



Denkpause

Aufgaben

Normal

Finde einen passenden DEA oder NEA für die folgenden Sprachen:

- $L_1 = \{ w \in \{a, b\}^* \mid |w|_a \equiv 1 \pmod{3} \}$
- $L_2 = \{ua \mid u \in \{a, b\}^*\}$

Etwas Schwerer

Finde einen passenden NEA mit einem Startzustand für die folgende Sprache

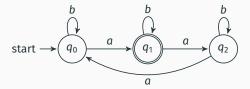
• $L_3 = L_1 \cup L_2$

Sehr Schwer

Finde für L3 einen passenden DEA

Lösung: Normal

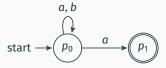
$$L_1 = \{ w \in \{a, b\}^* \mid |w|_a \equiv 1 \pmod{3} \}$$



Lösung: Normal

$$L_2 = \{ua \mid u \in \{a, b\}^*\}$$

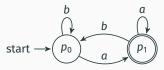
NEA:



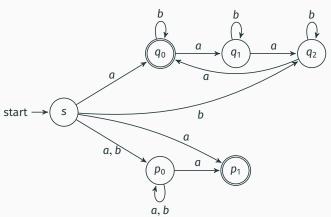
Lösung: Normal

$$L_2 = \{ua \mid u \in \{a, b\}^*\}$$

DEA:



Lösung: Etwas Schwieriger

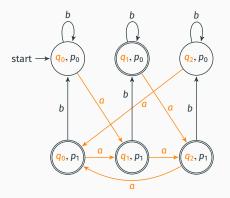


Lösung: Schwer

DEA für $L_3 = L_1 \cup L_2$

Idee: Wir nutzen die Zustände $\{(q_i, p_j) \mid 1 \le i \le 3, 1 \le j \le 2\}$, so dass

• wir in Zustand q_i sind gdw. $i \equiv |w|_a \pmod{3}$

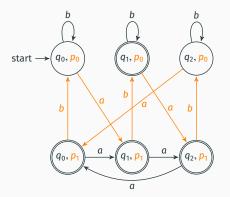


Lösung: Schwer

DEA für $L_3 = L_1 \cup L_2$

Idee: Wir nutzen die Zustände $\{(q_i, p_j) \mid 1 \le i \le 3, 1 \le j \le 2\}$, so dass

• wir in Zustand p_1 sind gdw. zuletzt ein a eingelesen wurde, sonst p_0 .

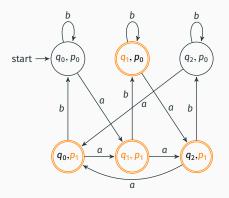


Lösung: Schwer

DEA für $L_3 = L_1 \cup L_2$

Idee: Wir nutzen die Zustände $\{(q_i, p_j) \mid 1 \le i \le 3, 1 \le j \le 2\}$, so dass

• wir in (q_i, p_j) akzeptieren falls i = 1 (da $w \in L_1$) oder j = 1 (da $w \in L_2$)



Grammatik und Automaten

Automaten: Formal

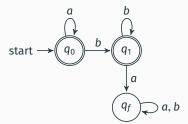
Ein **DEA M** lässt sich beschreiben durch ein geordnetes 5-Tupel

 $M = (Z, \Sigma, \delta, z_0, E)$ mit:

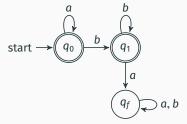
- Z: Die Menge der Zustände
- Σ: Das Alphabet
- δ : Die Überführungsfunktion
- z₀: Der Startzustand
- E: Die Menge der Endzustände

$$M = (Z, \Sigma, \delta, q_0, E)$$
 mit:

$$L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}\$$

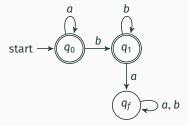


$$L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}\$$



$$M = (Z, \Sigma, \delta, q_0, E)$$
 mit:
$$\cdot Z = \{q_0, q_1, q_f\}$$

$$L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}\$$

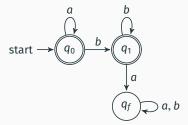


 $M = (Z, \Sigma, \delta, q_0, E)$ mit:

•
$$Z = \{q_0, q_1, q_f\}$$

•
$$\Sigma = \{a, b\}$$

$$L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}\$$



 $M = (Z, \Sigma, \delta, q_0, E)$ mit:

•
$$Z = \{q_0, q_1, q_f\}$$

•
$$\Sigma = \{a, b\}$$

δ:

•
$$\delta(q_0, a) = q_0$$

•
$$\delta(q_0,b)=q_1$$

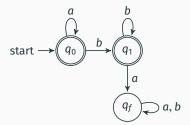
•
$$\delta(q_1, a) = q_f$$

•
$$\delta(q_1,b)=q_1$$

•
$$\delta(q_f, a) = q_f$$

•
$$\delta(q_f, b) = q_f$$

$$L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}\$$



 $M = (Z, \Sigma, \delta, q_0, E)$ mit:

•
$$Z = \{q_0, q_1, q_f\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\delta(q_0, a) = q_0$$

•
$$\delta(q_0,b)=q_1$$

•
$$\delta(q_1, a) = q_f$$

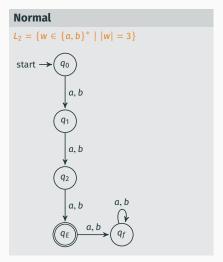
• $\delta(q_1, b) = q_1$

•
$$\delta(q_f, a) = q_f$$

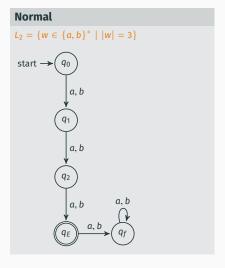
•
$$\delta(q_f, b) = q_f$$

•
$$E = \{q_0, q_1\}$$

Aufgabe

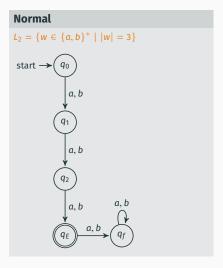


Aufgabe



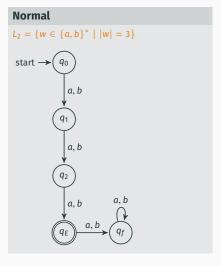
$$M = (Z, \Sigma, \delta, q_0, E)$$
 mit:

Aufgabe



$$M = (Z, \Sigma, \delta, q_0, E)$$
 mit:
• $Z = \{q_0, q_1, q_2, q_E, q_f\}$

Aufgabe



$$M = (Z, \Sigma, \delta, q_0, E) \text{ mit:}$$

$$\cdot Z = \{q_0, q_1, q_2, q_E, q_f\}$$

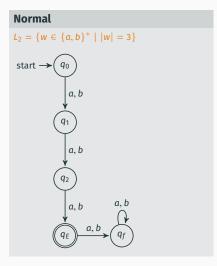
$$\cdot \Sigma = \{a, b\}$$

Aufgabe

Normal $L_2 = \{ w \in \{a, b\}^* \mid |w| = 3 \}$ a, b a, b a, b

$$\begin{split} \mathbf{M} &= (\mathbf{Z}, \mathbf{\Sigma}, \delta, q_0, \mathbf{E}) \text{ mit:} \\ & \cdot \ \mathbf{Z} = \{q_0, q_1, q_2, q_{\mathbf{E}}, q_f\} \\ & \cdot \ \mathbf{\Sigma} = \{a, b\} \\ & \cdot \ \delta : \\ & \cdot \ \delta (q_0, a) = q_1 \\ & \cdot \ \delta (q_0, b) = q_1 \\ & \cdot \ \delta (q_1, a) = q_2 \\ & \cdot \ \delta (q_1, b) = q_2 \\ & \cdot \ \delta (q_2, a) = q_{\mathbf{E}} \\ & \cdot \ \delta (q_2, b) = q_{\mathbf{E}} \\ & \cdot \ \delta (q_{\mathbf{E}}, a) = q_f \\ & \cdot \ \delta (q_f, a) = q_f \\ & \cdot \ \delta (q_f, a) = q_f \\ & \cdot \ \delta (q_f, b) = q_f \end{split}$$

Aufgabe



$$\begin{split} \mathbf{M} &= (\mathbf{Z}, \mathbf{\Sigma}, \boldsymbol{\delta}, \mathbf{q_0}, \mathbf{E}) \text{ mit:} \\ & \cdot \ \mathbf{Z} = \{q_0, q_1, q_2, q_E, q_f\} \\ & \cdot \ \mathbf{\Sigma} = \{a, b\} \\ & \cdot \ \delta: \\ & \cdot \ \delta(q_0, a) = q_1 \\ & \cdot \ \delta(q_0, b) = q_1 \\ & \cdot \ \delta(q_1, a) = q_2 \\ & \cdot \ \delta(q_1, b) = q_2 \\ & \cdot \ \delta(q_2, a) = q_E \\ & \cdot \ \delta(q_2, b) = q_E \\ & \cdot \ \delta(q_E, b) = q_f \\ & \cdot \ \delta(q_F, a) = q_f \\ & \cdot \ \delta(q_f, a) = q_f \\ & \cdot \ \delta(q_f, b) = q_f \\ & \cdot \ \delta(q_f, b) = q_f \\ \end{split}$$

Wir stellen einige Parallelen fest:

DEA

Reguläre Grammatiken

DEA	Reguläre Grammatiken
Wörter werden von links nach rechts	Wörter werden von links nach rechts
gelesen	erzeugt

DEA	Reguläre Grammatiken
Wörter werden von links nach rechts	Wörter werden von links nach rechts
gelesen	erzeugt
Pro Schritt wird ein Buchstabe gele-	Pro Schritt wird ein Buchstabe er-
sen	zeugt

DEA	Reguläre Grammatiken
Wörter werden von links nach rechts	Wörter werden von links nach rechts
gelesen	erzeugt
Pro Schritt wird ein Buchstabe gele-	Pro Schritt wird ein Buchstabe er-
sen	zeugt
Ein Startzustand	Ein Startsymbol

DEA	Reguläre Grammatiken
Wörter werden von links nach rechts	Wörter werden von links nach rechts
gelesen	erzeugt
Pro Schritt wird ein Buchstabe gele-	Pro Schritt wird ein Buchstabe er-
sen	zeugt
Ein Startzustand	Ein Startsymbol
Wenn beim Lesen des letzten Buch-	Beim Erzeugen des letzten Buchsta-
stabens in einen Endzustand überge-	bens wird keine neue Variable er-
gangen wird, wird akzeptiert	zeugt

DEA	Reguläre Grammatiken
Wörter werden von links nach rechts	Wörter werden von links nach rechts
gelesen	erzeugt
Pro Schritt wird ein Buchstabe gele-	Pro Schritt wird ein Buchstabe er-
sen	zeugt
Ein Startzustand	Ein Startsymbol
Wenn beim Lesen des letzten Buch-	Beim Erzeugen des letzten Buchsta-
stabens in einen Endzustand überge-	bens wird keine neue Variable er-
gangen wird, wird akzeptiert	zeugt
In jedem Schritt wird aus einem Zu-	In jedem Schritt wird aus einer Varia-
stand in genau einen Zustand über-	ble genau eine Variable erzeugt
gegangen	

Automaten und Grammatiken

Satz

Jede durch deterministische endliche Automaten erkennbare Sprache ist auch regulär (also Typ 3).

Der Beweis dieses Satzes findet sich im Anhang. Ihr werdet ihn auch in der Vorlesung zeigen. Verdauungspause

Reguläre Ausdrücke

Mehr Möglichkeiten reguläre Sprachen zu beschreiben

Automaten und Mengenschreibweise sind oft nicht das optimale Mittel, eine Sprache zu beschreiben.

Die regulären Ausdrücke bieten uns eine Möglichkeit Sprachen schnell und intuitiv zu beschreiben.

Funktionsweise

- 1. Wörter können mit einem angegebenen Muster abgeglichen werden.
- 2. Lässt sich ein Wort durch das Muster beschreiben, ist es in der davon beschriebenen Sprache.

Reguläre Ausdrücke verwenden

Induktive Definition der Syntax

- Ø und ε sind reguläre Ausdrücke.
- a ist ein regulärer Ausdruck (für alle $a \in \Sigma$).
- Wenn α und β reguläre Ausdrücke sind, dann sind $\alpha\beta$, $(\alpha \mid \beta)$ und $(\alpha)^*$ auch reguläre Ausdrücke.

Beispiele für die Syntax

Reguläre Ausdrücke können zum Beispiel so aussehen...

- $\gamma_1 = (a|b)baa(ab)^*$
- $\gamma_2 = ((\varepsilon|baa(b|bb))aa)^*$

Bedeutung von Regulären Ausdrücken

Reguläre Ausdrücke und Sprachen

Ein regulärer Ausdruck γ beschreibt eine formale Sprache.

Diese formale Sprache schreiben wir als $L(\gamma) \subseteq \Sigma^*$.

Wir bauen reguläre Ausdrücke schrittweise auf und erklären dabei die Bedeutung der einzelnen Bausteine:

Bedeutung von regulären Ausdrücken

```
• Sei \gamma = \emptyset: Dann ist L(\gamma) = \emptyset
```

Bedeutung von Regulären Ausdrücken

Reguläre Ausdrücke und Sprachen

Ein regulärer Ausdruck γ beschreibt eine formale Sprache.

Diese formale Sprache schreiben wir als $L(\gamma) \subseteq \Sigma^*$.

Wir bauen reguläre Ausdrücke schrittweise auf und erklären dabei die Bedeutung der einzelnen Bausteine:

Bedeutung von regulären Ausdrücken

- Sei $\gamma = \emptyset$: Dann ist $L(\gamma) = \emptyset$
- Sei $\gamma = \varepsilon$: Dann ist $L(\gamma) = \{\varepsilon\}$

Bedeutung von Regulären Ausdrücken

Reguläre Ausdrücke und Sprachen

Ein regulärer Ausdruck γ beschreibt eine formale Sprache.

Diese formale Sprache schreiben wir als $L(\gamma) \subseteq \Sigma^*$.

Wir bauen reguläre Ausdrücke schrittweise auf und erklären dabei die Bedeutung der einzelnen Bausteine:

Bedeutung von regulären Ausdrücken

- Sei $\gamma = \emptyset$: Dann ist $L(\gamma) = \emptyset$
- Sei $\gamma = \varepsilon$: Dann ist $L(\gamma) = \{\varepsilon\}$
- Sei $\gamma = a$ für ein $a \in \Sigma$: Dann ist $L(\gamma) = \{a\}$

Bedeutung von regulären Ausdrücken

Bedeutung von regulären Ausdrücken

Sind α und β bereits reguläre Ausdrücke, so gilt:

• Sei
$$\gamma = (\alpha \mid \beta)$$
: Dann ist $L(\gamma) = L(\alpha) \cup L(\beta)$

Beispiel: $\gamma = (\alpha \mid \beta)$

- $L(a|b) = \{a, b\}$
- $L((aab|baba)|a) = \{aab, baba, a\}$

Bedeutung von regulären Ausdrücken

Bedeutung von regulären Ausdrücken

Sind α und β bereits reguläre Ausdrücke, so gilt:

- Sei $\gamma = (\alpha \mid \beta)$: Dann ist $L(\gamma) = L(\alpha) \cup L(\beta)$
- Sei $\gamma = (\alpha)^*$: Dann ist $L(\gamma) = L(\alpha)^*$

Beispiel: $\gamma = (\alpha)^*$

- $L((a)^*) = \{a\}^* = \{a^n \mid n \in \mathbb{N}\}$
- $L((abaa)^*) = \{abaa\}^* = \{w^n \mid n \in \mathbb{N}, w = abaa\}$
- $L((a|b)^*) = (L(a|b))^* = \{a, b\}^*$
- $L((a)^*|(b)^*) = L((a)^*) \cup L((b)^*) = \{a\}^* \cup \{b\}^*$

Bedeutung von regulären Ausdrücken

Bedeutung von regulären Ausdrücken

Sind α und β bereits reguläre Ausdrücke, so gilt:

- Sei $\gamma = (\alpha \mid \beta)$: Dann ist $L(\gamma) = L(\alpha) \cup L(\beta)$
- Sei $\gamma = (\alpha)^*$: Dann ist $L(\gamma) = L(\alpha)^*$
- Sei $\gamma = \alpha \beta$: Dann ist $L(\gamma) = \{uv \mid u \in L(\alpha) \land v \in L(\beta)\}$

Beispiel: $\gamma = \alpha \beta$

- $L(ababba) = \{ababba\}$
- $L((a)^*(b)^*) = \{a^n b^m \mid n, m \in \mathbb{N}\}$
- $L((bab|(ab)^*)abb) = \{bababb\} \cup \{(ab)^n abb \mid n \in \mathbb{N}\}$

Aufgaben

Finde einen regulären Ausdruck γ_i für die folgenden Sprachen.

Normal

- $L(\gamma_1) = \{a^{2n} \mid n \in \mathbb{N}\}$
- $L(\gamma_2) = \{a^n b^m \mid n, m \in \mathbb{N}\}$
- $L(\gamma_3) = \{uv \mid u \in \{a, b\}^*, v \in \{c, d\}\}$
- $L(\gamma_4) = \{ w \mid |w| = 3, w \in \{a, b, c\}^* \}$

Etwas Schwerer

- $L(\gamma_5) = \{a^n \mid n \equiv 1 \pmod{3}\}$
- $L(\gamma_6) = \{uv \mid u \in \{\blacktriangleleft, \blacktriangle, \blacktriangleright, \blacktriangledown\}^*, v \in \{\textcircled{\mathbb{Q}}\}\}$
- $L(\gamma_7) = \{ w \mid |w|_a = 3, |w|_b = 1, w \in \{a, b, c\}^* \}$

•
$$\gamma_1 = (aa)^*$$

- $\gamma_1 = (aa)^*$
- $\gamma_2 = a^*b^*$

- $\gamma_1 = (aa)^*$
- $\gamma_2 = a^*b^*$
- $\gamma_3 = (a|b)^*(c|d)$

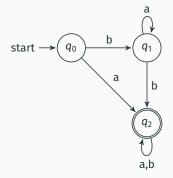
- $\gamma_1 = (aa)^*$
- $\gamma_2 = a^*b^*$
- $\gamma_3 = (a|b)^*(c|d)$
- $\gamma_4 = (a|b|c)(a|b|c)(a|b|c)$

- $\gamma_1 = (aa)^*$
- $\gamma_2 = a^*b^*$
- $\gamma_3 = (a|b)^*(c|d)$
- $\gamma_4 = (a|b|c)(a|b|c)(a|b|c)$
- $\gamma_5 = a(aaa)^*$

- $\gamma_1 = (aa)^*$
- $\gamma_2 = a^*b^*$
- $\gamma_3 = (a|b)^*(c|d)$
- $\gamma_4 = (a|b|c)(a|b|c)(a|b|c)$
- $\gamma_5 = a(aaa)^*$
- $\gamma_6 = (\blacktriangleleft | \blacktriangle | \blacktriangleright | \blacktriangledown)^*$

- $\gamma_1 = (aa)^*$
- $\gamma_2 = a^*b^*$
- $\gamma_3 = (a|b)^*(c|d)$
- $\gamma_4 = (a|b|c)(a|b|c)(a|b|c)$
- $\gamma_5 = a(aaa)^*$
- $\gamma_6 = (\blacktriangleleft |\blacktriangle| \blacktriangleright |\blacktriangledown)^*$
- $\gamma_7 = c^*(ac^*ac^*ac^*b \mid ac^*ac^*bc^*a \mid ac^*bc^*ac^*a \mid bc^*ac^*ac^*a)c^*$

Gegeben sei folgender DEA M:

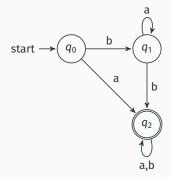


Welcher reguläre Ausdruck beschreibt

T(M)?

- 1. $(a|b(a)^*b)(a|b)^*$
- 2. $a(ab)^*$
- 3. $(a|b(a)^*b)(b)^*$
- 4. $(a|b)^*$

Gegeben sei folgender DEA M:



Welcher reguläre Ausdruck beschreibt

T(M)?

- 1. $(a|b(a)^*b)(a|b)^*$
- 2. $a(ab)^*$
- 3. $(a|b(a)^*b)(b)^*$
- 4. $(a|b)^*$

Aufgaben

Welche der folgenden Aussagen sind wahr/falsch? Begründe.

Normal

- $A_1: L((a|a)^*) = L((aa)^*)$
- $A_2: L((a|b)^*) = L((a)^*|(b)^*)$
- A_3 : $L((a(a|b)^*)|(b(a|b)^*)) = \{a,b\}^*$

Schwer

• A_4 : $L((\varepsilon|aaa)^* a(((aaa)^* | (\varepsilon)^* | aaa))) = \{a^n | n \equiv 1 \pmod{3}\}$

Sehr Schwer

• A_5 : $L((a|b)^*) = L(((a)^*b)^*(a)^*)$

• A₁: falsch

- A₁: falsch
- A₂: falsch

- A₁: falsch
- A2: falsch
- A₃: falsch

- A₁: falsch
- A2: falsch
- A₃: falsch
- A4: wahr

- A₁: falsch
- A2: falsch
- A₃: falsch
- A4: wahr
- *A*₅: wahr

Wiederholung

Das können wir jetzt beantworten

Tag 1: Mengen

- Was ist eine Menge?
- · Wie kann man zwei Mengen verknüpfen?
- Wie schreibt man formal Mengen auf?

Das können wir jetzt beantworten

Tag 1: Formale Sprachen

- Was ist eine Formale Sprache?
- Was ist ein Alphabet?
- Wie zeigt man, dass zwei Sprachen äquivalent sind?

Wiederholung Grundlegender Definitionen

Aufgaben

Beantworte die folgenden Fragen

Normal

- Was ist der Unterschied zwischen Σ und Σ^* ?
- Welche besondere Eigenschaft besitzt das leere Wort arepsilon? Insbesondere: Welchen Wert besitzt |arepsilon|?
- Welchen Wert besitzt $|\varepsilon \cdot a^2 \cdot \varepsilon \cdot bab|_a$?

Normal

Was ist der Unterschied zwischen Σ und Σ^* ?

- i) Das Alphabet Σ ist eine nichtleere Menge einstelliger Symbole.
- ii) Σ^* ist die Menge aller möglichen Kombinationen (bzgl. der Konkatenation) der Elemente aus $\Sigma.$
 - Insbesondere gilt hier $\varepsilon \in \Sigma^*$.

Normal

Welche besondere Eigenschaft besitzt das leere Wort ε ? Insbesondere: Welchen Wert besitzt $|\varepsilon|$?

arepsilon ist das neutrale Element bzgl. der Konkatenation. Das heißt:

$$\forall w \in \Sigma^* : w = w \cdot \varepsilon = \varepsilon \cdot w$$

Insbesondere gilt also:

$$\forall w \in \Sigma^* : |w| = |w \cdot \varepsilon| = |w| + |\varepsilon|$$

womit $|\varepsilon| = 0$ gelten muss.

Normal

Welchen Wert besitzt $|\varepsilon \cdot a^2 \cdot \varepsilon \cdot bab|_a$?

Zunächst schreiben wir

$$\varepsilon \cdot a^2 \cdot \varepsilon \cdot bab = a^2bab = aabab$$

und zählen anschließend die vorkommenden a's. Also

$$|\varepsilon \cdot a^2 \cdot \varepsilon \cdot bab|_a = |aabab|_a = 3.$$

Aufgaben zu Mengen

Aufgaben

Welche der folgenden Aussagen ist korrekt?

Normal bis etwas Schwerer

• $a \in \{a, b, c\}$

• $\{a,b\} \subseteq \{a,b,\{a,b\},c\}$

• $a \subseteq \{a, b, c\}$

• $\{\{a,b\}\}\subseteq \{a,b,\{a,b\},c\}$

• $\{a,b\} \in \{a,b,\{a,b\},c\}$

Nenne jeweils 5 Wörter aus den folgenden Sprachen

Normal bis etwas Schwerer

- $L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}$
- $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$
- $L_3 = L_2 \setminus L_1$
- $L_4 = \{w \in \{a, b\}^* \mid |w|_a \equiv 3 \pmod{4}\}$

Normal

$$a\in\{a,b,c\}$$

· wahr

Normal

$$a\subseteq\{a,b,c\}$$

- · wahr
- geht nicht

Normal

$$\{a,b\} \in \{a,b,\{a,b\},c\}$$

- · wahr
- geht nicht
- wahr

$${a,b} \subseteq {a,b,{a,b},c}$$

- · wahr
- · geht nicht
- wahr
- · wahr

$$\{\{a,b\}\}\subseteq \{a,b,\{a,b\},c\}$$

- · wahr
- · geht nicht
- wahr
- · wahr
- wahr

Normal

$$L_1 = \{a^nb^m \mid n,m \in \mathbb{N}\}$$

• ε, a, b, aa, ab, aaa, aab, abb, bbb, ...

$$L_2 = \{a^nb^n \mid n \in \mathbb{N}\}$$

- ε , a, b, aa, ab, aaa, aab, abb, bbb, ...
- ε , ab, aabb, a^3b^3 , a^4b^4 , ...

$$L_1 = \{a^n b^m \mid n, m \in \mathbb{N}\}$$

$$L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$$

$$L_3 = L_2 \setminus L_1$$

- ε , a, b, aa, ab, aaa, aab, abb, bbb, ...
- ε , ab, aabb, a^3b^3 , a^4b^4 , ...
- Keine Wörter; ∅

$$L_4 = \{ w \in \{a, b\}^* \mid |w|_a \equiv 3 \pmod{4} \}$$

- ε , a, b, aa, ab, aaa, aab, abb, bbb, ...
- ε , ab, aabb, a^3b^3 , a^4b^4 , ...
- Keine Wörter; \varnothing
- aaa, baaa, abaa, aaba, aaab, a⁷, ...

Wiederholung Grundlegender Definitionen

Aufgaben

Bestimme den Wahrheitswert der folgenden Aussagen

Normal

- $\neg (42 = 11) \land (|\varepsilon| > 0 \lor \emptyset^* = {\varepsilon})$
- $\forall w \in \{a, b\}^* : (|w|_a = 0 \implies w = \varepsilon)$
- $\forall w \in \{a, b\}^* : (|w|_a = 0 \implies ab = ba)$
- $(\forall w \in \{a, b\}^* : |w|_a = 0) \implies ab = ba$

Schwer

• $\forall x \in \mathbb{Z} : x \equiv 0 \pmod{2} \lor x \equiv 1 \pmod{4}$

Normal

$$\neg (42=11) \wedge (|\varepsilon| > 0 \vee \varnothing^* = \{\varepsilon\})$$

richtig

$$\forall w \in \{a, b\}^* : (|w|_a = 0 \implies w = \varepsilon)$$

- richtig
- falsch

$$\forall w \in \{a, b\}^* : (|w|_a = 0 \implies ab = ba)$$

- richtig
- falsch
- falsch

$$(\forall w \in \{a, b\}^* : |w|_a = 0) \implies ab = ba$$

- richtig
- falsch
- falsch
- richtig

Schwer

$$\forall x \in \mathbb{Z} : x \equiv 0 \pmod{2} \lor x \equiv 1 \pmod{4}$$

Die Aussage ist falsch!

Gegenbeispiel x = 3, dann ist $x \equiv 1 \pmod{2}$ und $x \equiv 3 \pmod{4}$.

Tag 2: Beweise

- · Was ist ein direkter Beweis?
- · Wie funktioniert die Kontraposition?
- · Wie funktioniert ein Widerspruchsbeweis?

Beweise

Aufgaben

Versuche dich an folgenden Beweisen:

Normal

Sei $L = \{a^n b^n \mid n \in \mathbb{N}\}$, dann gilt:

$$\forall w \in \{a, b\}^* : (w \in L \implies |w| \text{ ist gerade})$$

Wer noch nicht genug hat...

$$\forall x \in \mathbb{Z} : x \equiv 0 \pmod{2} \lor x^2 \equiv 1 \pmod{4}$$

Aufgabe

z.Z.: Sei
$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$
, dann gilt: $\forall w \in \{a, b\}^* : (w \in L \Longrightarrow |w| \text{ ist gerade})$

Beweis

1. Sei $w \in \{a, b\}^*$ beliebig.

Aufgabe

z.Z.: Sei $L = \{a^n b^n \mid n \in \mathbb{N}\}$, dann gilt: $\forall w \in \{a, b\}^* : (w \in L \implies |w| \text{ ist gerade})$

- 1. Sei $w \in \{a, b\}^*$ beliebig.
- 2. Angenommen, $w \in L$.

Aufgabe

```
z.Z.: Sei L = \{a^n b^n \mid n \in \mathbb{N}\}, dann gilt:

\forall w \in \{a, b\}^* : (w \in L \implies |w| \text{ ist gerade})
```

- 1. Sei $w \in \{a, b\}^*$ beliebig.
- 2. Angenommen, $w \in L$.
- 3. Dann existiert ein $n \in \mathbb{N}$ so, dass $w = a^n b^n$.

Aufgabe

z.Z.: Sei $L = \{a^n b^n \mid n \in \mathbb{N}\}$, dann gilt: $\forall w \in \{a, b\}^* : (w \in L \implies |w| \text{ ist gerade})$

- 1. Sei $w \in \{a, b\}^*$ beliebig.
- 2. Angenommen, $w \in L$.
- 3. Dann existiert ein $n \in \mathbb{N}$ so, dass $w = a^n b^n$.
- 4. Insbesondere gilt:

$$|w| = |a^n b^n| = |a^n| + |b^n| = n + n = 2n$$

Aufgabe

z.Z.: Sei $L = \{a^n b^n \mid n \in \mathbb{N}\}$, dann gilt: $\forall w \in \{a, b\}^* : (w \in L \implies |w| \text{ ist gerade})$

Beweis

- 1. Sei $w \in \{a, b\}^*$ beliebig.
- 2. Angenommen, $w \in L$.
- 3. Dann existiert ein $n \in \mathbb{N}$ so, dass $w = a^n b^n$.
- 4. Insbesondere gilt:

$$|w| = |a^n b^n| = |a^n| + |b^n| = n + n = 2n$$

5. Folglich ist |w| gerade.

Aufgabe

z.Z.:
$$\forall x \in \mathbb{Z} : x \equiv 0 \pmod{2} \lor x^2 \equiv 1 \pmod{4}$$

Beweis

1. Sei $x \in \mathbb{Z}$ beliebig.

Aufgabe

z.Z.: $\forall x \in \mathbb{Z} : x \equiv 0 \pmod{2} \lor x^2 \equiv 1 \pmod{4}$

- 1. Sei $x \in \mathbb{Z}$ beliebig.
- 2. i) (Fall gerade) Sei $x \equiv 0 \pmod{2}$: Dann sind wir schon fertig.

Aufgabe

z.Z.: $\forall x \in \mathbb{Z} : x \equiv 0 \pmod{2} \lor x^2 \equiv 1 \pmod{4}$

Beweis

- 1. Sei $x \in \mathbb{Z}$ beliebig.
- 2. i) (Fall gerade) Sei $x \equiv 0 \pmod{2}$: Dann sind wir schon fertig.
 - ii) (Fall ungerade) Sei $x \equiv 1 \pmod{2}$: Dann können wir x schreiben als x = 2k + 1 für ein $k \in \mathbb{Z}$. Es gilt:

$$x^{2} = (2k + 1)^{2} = 4k^{2} + 4k + 1 = 4(k^{2} + k) + 1$$

Also folgt unmittelbar laut Definition $x^2 \equiv 4(k^2 + k) + 1 \equiv 1 \pmod{4}$.

Aufgabe

z.Z.: $\forall x \in \mathbb{Z} : x \equiv 0 \pmod{2} \lor x^2 \equiv 1 \pmod{4}$

Beweis

- 1. Sei $x \in \mathbb{Z}$ beliebig.
- 2. i) (Fall gerade) Sei $x \equiv 0 \pmod{2}$: Dann sind wir schon fertig.
 - ii) (Fall ungerade) Sei $x \equiv 1 \pmod{2}$: Dann können wir x schreiben als x = 2k + 1 für ein $k \in \mathbb{Z}$. Es gilt:

$$x^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 4(k^{2} + k) + 1$$

Also folgt unmittelbar laut Definition $x^2 \equiv 4(k^2 + k) + 1 \equiv 1 \pmod{4}$.

3. Somit ist die Behauptung bewiesen.

Tag 3: Grammatiken

- · Was sind Grammatiken?
- Was ist der Zusammenhang zwischen Grammatiken und Sprachen?
- Wie finde ich raus, ob ein Wort von einer Grammatik erzeugt wird?

Tag 4: Reguläre Grammatiken

- Wie sehen Produktionsregeln für reguläre Grammatiken aus?
- · Bilden einer regulären Grammatik für gegebene reguläre Sprache

Tag 4: Automaten

- Was sind Automaten?
- · Was macht einen deterministischen Automaten aus?
- · Finden eines (deterministischen) Automaten für gegebene Sprache

Wiederholung: Grammatiken, Automaten, Reguläre Ausdrücke

Aufgaben

Gegeben sind formale Sprachen. Finde dafür:

- eine reguläre Grammatik
- einen Automaten (NEA oder DEA)
- einen regulären Ausdruck

Normal

• $L_1 = \{aa, bb\}$ über dem Alphabet $\Sigma_1 = \{a, b\}$

Etwas Schwerer

• $L_2 = \{(ab)^n x \mid n \in \mathbb{N} \land x \in \{c, d\}\} \text{ über } \Sigma_2 = \{a, b, c, d\}$

Hinweis: Achte auf formal korrekte Notation.

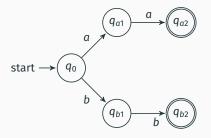
$$L_1 = \{aa, bb\}$$
 über $\Sigma_1 = \{a, b\}$

$$\mathit{L}_1 = \{\mathit{aa}, \mathit{bb}\} \; \text{\"{u}ber} \; \Sigma_1 = \{\mathit{a}, \mathit{b}\}$$

• Grammatik: $G_1 = (V_1, \Sigma_1, P_1, S)$ mit $V_1 = \{S, A, B\}$, $P_1 = \{S \to aA \mid bB, A \to a, B \to b\}$

$$L_1 = \{aa, bb\}$$
 über $\Sigma_1 = \{a, b\}$

- Grammatik: $G_1 = (V_1, \Sigma_1, P_1, S) \text{ mit } V_1 = \{S, A, B\},$ $P_1 = \{S \to aA \mid bB, A \to a, B \to b\}$
- Automat: $M_1 = (\{q_0, q_{a1}, q_{a2}, q_{b1}, q_{b2}\}, \Sigma_1, \delta_1, q_0, \{q_{a2}, q_{b2}\})$

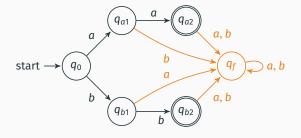


δ_1 :

- $\delta_1(q_0,a)=q_{a1}$
- $\delta_1(q_{a1},a)=q_{a2}$
- $\delta_1(q_0,b)=q_{b1}$
- $\delta_1(q_{b1},b)=q_{b2}$

$$L_1 = \{aa, bb\}$$
 über $\Sigma_1 = \{a, b\}$

- Grammatik: $G_1 = (V_1, \Sigma_1, P_1, S)$ mit $V_1 = \{S, A, B\}$, $P_1 = \{S \to aA \mid bB, A \to a, B \to b\}$
- Automat: $M_1 = (\{q_0, q_{a1}, q_{a2}, q_{b1}, q_{b2}, q_f\}, \Sigma_1, \delta_1, q_0, \{q_{a2}, q_{b2}\})$

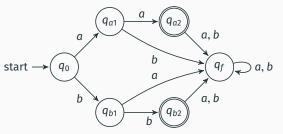


δ_1 :

- $\delta_1(q_0,a)=q_{a1}$
- $\delta_1(q_{a1},a)=q_{a2}$
- $\delta_1(q_0,b)=q_{b1}$
- $\delta_1(q_{b1},b)=q_{b2}$
- ..

$$L_1 = \{aa, bb\}$$
 über $\Sigma_1 = \{a, b\}$

- Grammatik: $G_1 = (V_1, \Sigma_1, P_1, S) \text{ mit } V_1 = \{S, A, B\},$ $P_1 = \{S \to aA \mid bB, A \to a, B \to b\}$
- Automat: $M_1 = (\{q_0, q_{a1}, q_{a2}, q_{b1}, q_{b2}, q_f\}, \Sigma_1, \delta_1, q_0, \{q_{a2}, q_{b2}\})$



• Regulärer Ausdruck: $\gamma_1 = (aa|bb)$

 δ_1 :

- $\delta_1(q_0,a)=q_{a1}$
- $\delta_1(q_{a1},a)=q_{a2}$
- $\delta_1(q_0,b)=q_{b1}$
- $\delta_1(q_{b1},b)=q_{b2}$
- ..

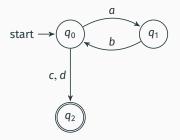
$$L_2 = \{(ab)^n x \mid n \in \mathbb{N} \land x \in \{c,d\}\} \text{ \"{u}ber } \Sigma_2 = \{a,b,c,d\}$$

$$L_2 = \{(ab)^n x \mid n \in \mathbb{N} \land x \in \{c, d\}\} \text{ "uber } \Sigma_2 = \{a, b, c, d\}$$

• Grammatik: $G_2 = (V_2, \Sigma_2, P_2, S)$ mit $V_2 = \{S, A\}$, $P_2 = \{S \rightarrow aA \mid c \mid d, A \rightarrow bS\}$

$$L_2 = \{(ab)^n x \mid n \in \mathbb{N} \land x \in \{c, d\}\} \text{ "uber } \Sigma_2 = \{a, b, c, d\}$$

- Grammatik: $G_2 = (V_2, \Sigma_2, P_2, S)$ mit $V_2 = \{S, A\}$, $P_2 = \{S \rightarrow aA \mid c \mid d, A \rightarrow bS\}$
- Automat: $M_2 = \left(\left\{q_0, q_1, q_2\right\}, \Sigma_2, \delta_2, q_0, \left\{q_2\right\}\right)$



 δ_2 :

•
$$\delta_2(q_0, a) = q_1$$

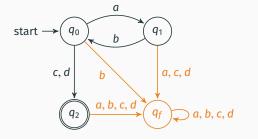
•
$$\delta_2(q_0,c)=q_2$$

•
$$\delta_2(q_0,d)=q_2$$

•
$$\delta_2(q_1,b)=q_1$$

$$L_2 = \{(ab)^n x \mid n \in \mathbb{N} \land x \in \{c, d\}\} \text{ "uber } \Sigma_2 = \{a, b, c, d\}$$

- Grammatik: $G_2 = (V_2, \Sigma_2, P_2, S)$ mit $V_2 = \{S, A\}$, $P_2 = \{S \rightarrow aA \mid c \mid d, A \rightarrow bS\}$
- Automat: $M_2 = \left(\left\{q_0, q_1, q_2, \frac{\mathbf{q}_f}{\mathbf{q}_f}\right\}, \Sigma_2, \delta_2, q_0, \left\{q_2\right\}\right)$



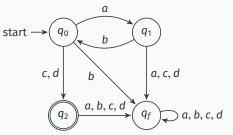
δ_2 :

- $\delta_2(q_0, a) = q_1$
- $\delta_2(q_0,c)=q_2$
- $\delta_2(q_0,d)=q_2$
- $\delta_2(q_1,b)=q_1$
- . .

Lösungen

$$L_2 = \{(ab)^n x \mid n \in \mathbb{N} \land x \in \{c, d\}\} \text{ über } \Sigma_2 = \{a, b, c, d\}$$

- Grammatik: $G_2 = (V_2, \Sigma_2, P_2, S)$ mit $V_2 = \{S, A\}$, $P_2 = \{S \rightarrow aA \mid c \mid d, A \rightarrow bS\}$
- Automat: $M_2 = (\{q_0, q_1, q_2, q_f\}, \Sigma_2, \delta_2, q_0, \{q_2\})$



• Regulärer Ausdruck: $\gamma_2 = (ab)^*(c|d)$

 δ_2 :

•
$$\delta_2(q_0, a) = q_1$$

•
$$\delta_2(q_0,c)=q_2$$

•
$$\delta_2(q_0,d)=q_2$$

•
$$\delta_2(q_1,b)=q_1$$

Das können wir jetzt beantworten

Heute: Repräsentationen regulärer Sprachen

- · Welche Möglichkeiten gibt es, reguläre Sprachen zu beschreiben?
- · Wie wandelt man Automaten zu einer äquivalenten Grammatik um?
- Was ist ein regulärer Ausdruck?

Das können wir jetzt beantworten

Heute: Reguläre Ausdrücke

- · Wie funktioniert die Konkatenation?
- Was bedeuten $(\alpha \mid \beta)$ und $(\alpha)^*$?
- Finden eines regulären Ausdrucks für gegebene reguläre Sprache

Abk.	Bedeutung	Was?!
N	natürliche Zahlen	In der theoretischen Informatik enthält ${\mathbb N}$
	(mit 0)	die 0: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ (Auch \mathbb{N}_0)
\mathbb{Z}	ganze Zahlen	$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
Σ	Sigma	mit diesem Zeichen wird oft das Alphabet
		(die Menge an verwendbaren Symbolen) re-
		präsentiert
Σ^*	Sigma Stern	Menge aller Möglichkeiten Elemente aus Σ
		hintereinander zu schreiben
ε	leeres Wort	Wort (über bel. Alphabet) mit der Länge 0
		($ arepsilon $ = 0), in allen Σ^* enthalten.
Ø	8	leere Menge
a b	teilt	a ist Teiler von b, d.h. a teilt b ohne Rest
:	sodass	z.B. $\forall a, b \in \mathbb{Z} : a b$
mod	modulo	$a \equiv b \pmod{n} \iff n (a-b),$
		$mit\ a,b,n\in\mathbb{Z}$

Abk.	Bedeutung	Was?!
z.z.	zu zeigen	Was zu beweisen ist
Sei		bereits bekannte Objekte werden
		eingeführt und benannt
3	es gibt ein	
3!	es gibt genau ein	
x ist genau y	x = y	genau wird verwendet bei Äquiva-
		lenz
x ist eindeutig	∃!x	
der, die, das		bestimmte Artikel weisen auf Ein-
		deutigkeit hin
gdw.	genau dann, wenn	Äquivalenz zwischen Aussagen

Abk.	Bedeutung	Was?!
A ist notwendig für B	$B \Longrightarrow A$	A muss wahr sein,
		wenn B wahr ist
A ist hinreichend für B	$A \Longrightarrow B$	B muss wahr sein,
		wenn A wahr ist
notwendig und hinreichend	$A \Longleftrightarrow B$	genau dann, wenn

Abk.	Bedeutung	Was?!
Œ	ohne Einschränkung	die Allgemeinheit der Aussage wird nicht durch getroffene Aussagen einge- schränkt
o.B.d.A.	ohne Beschränkung der Allgemeinheit	wie Œ
trivial	offensichtlich	Beweisschritte, welche keine weiter Begründung brauchen. (nicht verwenden!)
	Mic Drop	Kommt am Ende eines erfolgreichen Beweises
q.e.d.	quod erat demonstrandum	Was zu beweisen war

Cheatsheet

Gestalt	mögliches Vorgehen
nicht F	Zeige, dass F nicht gilt.
F und G	Zeige F und G in zwei getrennten Beweisen.
$F \Longrightarrow G$	Füge F in die Menge der Annahmen hinzu und zeige G.
F oder G	Zeige: nicht $F \implies G$.
	(Alternativ zeige: nicht G \implies F)
$F \iff G$	Zeige: $F \implies G$ und $G \implies F$.
$\forall x \in A : F$	Sei x ein beliebiges Element aus A. Zeige dann F.
$\exists x \in A : F$	Sei x ein konkretes Element aus A. Zeige dann F.

Abk.	Bedeutung	Was?!
$A \subseteq B$	Teilmenge	Alle Elemente aus A sind auch in B enthalten. Dabei können die Mengen auch gleich sein.
$A \subsetneq B$	echte Teilmenge	Alle Elemente aus A sind auch in B enthalten. Jedoch enthält B noch Elemente, die nicht in
		A enthalten sind.
		→ Mengen sind nicht gleich!
$A \subset B$	Teilmenge oder ech-	Bei manchen Leuten ⊆, bei manchen ⊊.
	te Teilmenge	Mehrdeutig, lieber nicht verwenden!

Abk.	Bedeutung	Was?!
start $\rightarrow q_0$	Startzustand	Hier fängt der Automat beim Lesen eines Wortes an
q_i q_j	Zustandsübergang	gibt an, welches Symbol eingelesen werden kann, um in den Folgezu- stand zu übergehen.
q_E	Endzustand	Hier kann ein fertig gelesenes Wort akzeptiert werden.
$q_f x \in \Sigma$	Fangzustand	wird benötigt, um Determinismus zu gewährleisten. In Graphiken oft nicht eingezeichnet, ist aber da. Malt den hin.

Abk.	Bedeutung	Was?!
T(M)	Sprache von Automat M	Die Sprache, die von einem Automat <i>M</i> erkannt wird
L(G)	Sprache von Grammatik G	Die Sprache, die von einer Grammatik G erzeugt wird
γ	kleines Gamma	oft Bezeichner für regulären Ausdruck
L(γ)	Sprache von reg. Ausdruck γ	Die Sprache. die von einem regulären Ausdruck γ erkannt wird

Anhang

Beweis: DEA zu Grammatik

Satz

Jede durch endliche Automaten erkennbare Sprache ist auch regulär (also Typ 3).

Satz

Jede durch endliche Automaten erkennbare Sprache ist auch regulär (also Typ 3).

Sei $A \subseteq \Sigma^*$ eine Sprache und M ein Automat mit T(M) = A.

Satz

Jede durch endliche Automaten erkennbare Sprache ist auch regulär (also Typ 3).

Sei $A \subseteq \Sigma^*$ eine Sprache und M ein Automat mit T(M) = A. (d.h. M erkennt die Sprache A)

Satz

Jede durch endliche Automaten erkennbare Sprache ist auch regulär (also Typ 3).

Sei $A\subseteq \Sigma^*$ eine Sprache und M ein Automat mit $\mathbf{T}(\mathbf{M})=\mathbf{A}$. (d.h. M erkennt die Sprache A)

Wir suchen eine Typ 3-Grammatik G mit L(G) = A.

Satz

Jede durch endliche Automaten erkennbare Sprache ist auch regulär (also Typ 3).

Sei $A\subseteq \Sigma^*$ eine Sprache und M ein Automat mit $\mathbf{T}(\mathbf{M})=\mathbf{A}$. (d.h. M erkennt die Sprache A)

Wir suchen eine Typ 3-Grammatik G mit L(G) = A. (d.h. die Grammatik G erzeugt die Sprache A)

Satz

Jede durch deterministische endliche Automaten erkennbare Sprache ist auch regulär (also Typ 3).

Sei $A \subseteq \Sigma^*$ eine Sprache und M ein DEA mit $\mathbf{T}(\mathbf{M}) = \mathbf{A}$. (d.h. M erkennt die Sprache A)

Wir suchen eine Typ 3-Grammatik G mit $\mathbf{L}(\mathbf{G}) = \mathbf{A}$. (d.h. die Grammatik G erzeugt die Sprache A)

Anmerkung

Wir beschränken uns auf DEAs; in der Vorlesung werdet ihr aber eine allgemeinere Äquivalenz zeigen.

Also: Zustände $\hat{=}$ Variablen; Übergänge $\hat{=}$ Produktionen

Also: Zustände $\hat{=}$ Variablen; Übergänge $\hat{=}$ Produktionen

Sei also ein DEA $M=(Z, \Sigma, \delta, z_0, E)$ gegeben.

Also: Zustände $\hat{=}$ Variablen; Übergänge $\hat{=}$ Produktionen Sei also ein DEA $M=(Z, \Sigma, \delta, z_0, E)$ gegeben. Wir definieren die Grammatik $G=(V, \Sigma, P, S)$ mit:

Alphabet Σ

Also: Zustände ≜ Variablen; Übergänge ≜ Produktionen

Sei also ein DEA $M=(Z, \Sigma, \delta, z_0, E)$ gegeben.

- Alphabet Σ
- Variablenmenge V = Z

Also: Zustände $\hat{=}$ Variablen; Übergänge $\hat{=}$ Produktionen

Sei also ein DEA $M = (Z, \Sigma, \delta, \mathbf{z}_0, E)$ gegeben.

- Alphabet Σ
- Variablenmenge V = Z
- Startsymbol $S = z_0$

Also: Zustände $\hat{=}$ Variablen; Übergänge $\hat{=}$ Produktionen

Sei also ein DEA $M=(Z,\Sigma,\delta,z_0,E)$ gegeben.

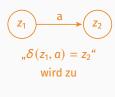
- Alphabet Σ
- Variablenmenge V = Z
- Startsymbol $S = z_0$
- Produktionsmenge P erzeugen wir aus δ

Für die Produktionsmenge *P* wandeln wir die Übergänge um.

Für die Produktionsmenge *P* wandeln wir die Übergänge um.

Jedem δ -Übergang $\delta(z_1, a) = z_2$ ordnen wir folgende Regeln zu:

•
$$z_1 \rightarrow az_2$$



$$z_1 \rightarrow az_2$$

Für die Produktionsmenge *P* wandeln wir die Übergänge um.

Jedem δ -Übergang $\delta(z_1, a) = z_2$ ordnen wir folgende Regeln zu:

- $z_1 \rightarrow az_2$
- Und zusätzlich, falls $z_2 \in E$:

$$z_1 \rightarrow a$$



Für die Produktionsmenge *P* wandeln wir die Übergänge um.

Jedem δ -Übergang $\delta(z_1,a)=z_2$ ordnen wir folgende Regeln zu:

- $z_1 \rightarrow az_2$
- Und zusätzlich, falls $z_2 \in E$: $z_1 \rightarrow a$

Falls $z_0 \in E$, brauchen wir außerdem $z_0 \to \varepsilon$.

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

start
$$\rightarrow$$
 z_0 $\xrightarrow{a_1}$ z_1 $\xrightarrow{a_2}$ \cdots $\xrightarrow{a_{n-1}}$ z_n $\xrightarrow{a_n}$ z_n

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

start
$$\rightarrow$$
 z_0 a_1 z_1 a_2 \cdots a_{n-1} z_{n-1} a_n

Mit den passenden Regeln lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 z_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

start
$$\longrightarrow$$
 z_0 x_1 x_2 x_2 x_n x_n x_n x_n x_n x_n

Mit den passenden Regeln (z.B. $z_0 \rightarrow a_1 z_1$) lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 z_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

start
$$\rightarrow$$
 z_0 z_1 z_2 z_n z_n z_n

Mit den passenden Regeln (z.B. $z_1 \rightarrow a_2 z_2$) lässt sich x ableiten:

$$z_0 \Rightarrow a_1 \overline{z_1} \Rightarrow a_1 a_2 \overline{z_2} \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} \overline{z_{n-1}} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

start
$$\rightarrow (z_0)$$
 $a_1 \rightarrow (z_1)$ $a_2 \rightarrow \cdots$ $a_{n-1} \rightarrow (z_{n-1})$ $a_n \rightarrow (z_n)$

Mit den passenden Regeln (z.B. $z_2 \rightarrow a_3 z_3$) lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 \overline{z_2} \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

start
$$\rightarrow$$
 z_0 a_1 z_1 a_2 \cdots a_{n-1} z_{n-1} a_n z_n

Mit den passenden Regeln (z.B. $z_{n-2} \rightarrow a_{n-1}z_{n-1}$) lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 z_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

start
$$\rightarrow$$
 z_0 a_1 z_1 a_2 \cdots a_{n-1} z_n

Mit den passenden Regeln (z.B. $z_{n-1} \rightarrow a_n$) lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 z_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

Mit den passenden Regeln lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 z_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Also können wir das Wort in der Grammatik ableiten.

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

$$\mathsf{start} \longrightarrow \boxed{z_0} \xrightarrow{a_1} \boxed{z_1} \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} \boxed{z_{n-1}} \xrightarrow{a_n} \boxed{z_n}$$

Mit den passenden Regeln lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 z_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Also können wir das Wort in der Grammatik ableiten.

Funktioniert die Argumentation auch andersrum?

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Sei $x = a_1 a_2 \dots a_{n-1} a_n$ ein Wort, das von M akzeptiert wird.

$$\mathsf{start} \longrightarrow \overbrace{z_0} \xrightarrow{a_1} \overbrace{z_1} \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} \overbrace{z_{n-1}} \xrightarrow{a_n} \overbrace{z_n}$$

Mit den passenden Regeln lässt sich x ableiten:

$$z_0 \Rightarrow a_1 z_1 \Rightarrow a_1 a_2 z_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} z_{n-1} \Rightarrow a_1 a_2 \ldots a_{n-1} a_n = x$$

Also können wir das Wort in der Grammatik ableiten.

Funktioniert die Argumentation auch andersrum? Ja!

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$

Die folgenden Aussagen sind äquivalent:

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$

Die folgenden Aussagen sind äquivalent:

• x wird von Automat M erkannt $(x \in T(M))$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$

Die folgenden Aussagen sind äquivalent:

- x wird von Automat M erkannt $(x \in T(M))$
- Es gibt eine Folge von Zuständen $z_0, z_1, \ldots, z_{n-1}, z_n$ mit: z_0 ist Startzustand, z_n ist Endzustand **und**: $\forall i \in \{1, \ldots, n\} : \delta(z_{i-1}, a_i) = z_i$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$ Die folgenden Aussagen sind äquivalent:

- x wird von Automat M erkannt $(x \in T(M))$
- Es gibt eine Folge von Zuständen $z_0, z_1, \ldots, z_{n-1}, z_n$ mit: z_0 ist Startzustand, z_n ist Endzustand **und**: $\forall i \in \{1, \ldots, n\} : \delta(z_{i-1}, a_i) = z_i$
- Es gibt Folge an Variablen $z_0, z_1, \ldots, z_{n-1}$ mit: z_0 ist Startvariable, $(z_{n-1} \to a_n) \in P$ und: $\forall i \in \{1, \ldots, n-1\} : (z_{i-1} \to a_i z_i) \in P$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$ Die folgenden Aussagen sind äquivalent:

- x wird von Automat M erkannt $(x \in T(M))$
- Es gibt eine Folge von Zuständen $z_0, z_1, \ldots, z_{n-1}, z_n$ mit: z_0 ist Startzustand, z_n ist Endzustand **und**: $\forall i \in \{1, \ldots, n\} : \delta(z_{i-1}, a_i) = z_i$
- Es gibt Folge an Variablen $z_0, z_1, \ldots, z_{n-1}$ mit: z_0 ist Startvariable, $(z_{n-1} \to a_n) \in P$ und: $\forall i \in \{1, \ldots, n-1\} : (z_{i-1} \to a_i z_i) \in P$
- Es gibt Folge an Variablen $z_0, z_1, \ldots, z_{n-1}$ mit: z_0 ist Startvariable **und**: $z_0 \Rightarrow a_1 z_1 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} a_n$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$ Die folgenden Aussagen sind äquivalent:

- x wird von Automat M erkannt $(x \in T(M))$
- Es gibt eine Folge von Zuständen $z_0, z_1, \ldots, z_{n-1}, z_n$ mit: z_0 ist Startzustand, z_n ist Endzustand **und**: $\forall i \in \{1, \ldots, n\} : \delta(z_{i-1}, a_i) = z_i$
- Es gibt Folge an Variablen $z_0, z_1, \ldots, z_{n-1}$ mit: z_0 ist Startvariable, $(z_{n-1} \to a_n) \in P$ und: $\forall i \in \{1, \ldots, n-1\} : (z_{i-1} \to a_i z_i) \in P$
- Es gibt Folge an Variablen $z_0, z_1, \ldots, z_{n-1}$ mit: z_0 ist Startvariable **und**: $z_0 \Rightarrow a_1 z_1 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} a_n$
- x wird von der Grammatik G produziert $(x \in L(G))$

Zu zeigen: $x \in T(M)$ **gdw.** $x \in L(G)$

Dabei gilt immer noch: $x = a_1 a_2 \dots a_{n-1} a_n$ Die folgenden Aussagen sind äquivalent:

- x wird von Automat M erkannt $(x \in T(M))$
- Es gibt eine Folge von Zuständen $z_0, z_1, \ldots, z_{n-1}, z_n$ mit: z_0 ist Startzustand, z_n ist Endzustand **und**: $\forall i \in \{1, \ldots, n\} : \delta(z_{i-1}, a_i) = z_i$
- Es gibt Folge an Variablen $z_0, z_1, \ldots, z_{n-1}$ mit: z_0 ist Startvariable, $(z_{n-1} \to a_n) \in P$ und: $\forall i \in \{1, \ldots, n-1\} : (z_{i-1} \to a_i z_i) \in P$
- Es gibt Folge an Variablen $z_0, z_1, \ldots, z_{n-1}$ mit: z_0 ist Startvariable **und**: $z_0 \Rightarrow a_1 z_1 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_{n-1} a_n$
- x wird von der Grammatik G produziert $(x \in L(G))$

Also gilt die Äquivalenz.

Lizenz

- · Unsere Folien sind frei!
- Jeder darf die Folien unter den Bedingungen der GNU General Public License v3 (oder jeder späteren Version) weiterverwenden.
- Ihr findet den Quelltext unter https://www.github.com/FIUS/theo-vorkurs-folien

Online-Whiteboard

